Кремниевая фотоника меняет принципы построения серверов. Будущее кремниевой фотоники Кремниевая фотоника

Не исключено, что когда-нибудь средствами кремниевой фотоники весь огромный ЦОД можно будет превратить в единый гипермасштабируемый компьютер , а если принять во внимание достигнутые к тому времени успехи в области искусственного интеллекта , то несложно представить себе нечто наподобие Океана на Солярисе, описанного Станиславом Лемом . Пока же нынешние серверы и ЦОДы по своему состоянию напоминают ПК в их бытность до появления SATA и USB : внутри - нескладные ленточные кабели, снаружи - последовательные и параллельные порты для мыши, клавиатуры и колонок. Но уже в 2025 году картина станет иной: все будет унифицировано и подключено по оптоволокну, что обеспечит качественно иной подход к целому ряду задач, в частности, к масштабированию и высокопроизводительным вычислениям. И все это станет возможным благодаря достижениям в области кремниевой фотоники.

Кремниевой фотоникой называют синергию двух групп технологий - электроники и оптики, которая позволяет принципиально изменить систему передачи данных на расстояниях от миллиметров до тысяч километров. По значимости результат внедрения кремниевой фотоники сравнивают с изобретением полупроводников, потому что ее внедрение позволяет еще на много лет вперед сохранить действие закона Мура , составляющего базис развития информационных и коммуникационных технологий.

Тем, кому интересны фундаментальные основы этого направления, можно порекомендовать вышедшую в 2017 году научно-популярную книгу «Кремниевая фотоника - источник следующей информационной революции» (Daryl Inniss, Roy Rubenstein "Silicon Photonics: Fueling the Next Information Revolution"). Более серьезные введения в кремниевую фотонику - книга «Silicon Photonics III: Systems and Applications» группы авторов и «Silicon Photonics: An Introduction» (Graham T. Reed, Andrew P. Knights). Также на эту тему есть несколько полезных материалов на сайте компании Mellanox .

Как это работает

Если же ограничиться практическими приложениями к компьютингу, то, как и в случае с электроникой, оптику и физику твердого тела можно оставить в стороне. Для понимания на системотехническом уровне достаточно самых поверхностных сведений о предмете. Казалось бы все очевидно: последовательность электрических сигналов преобразуется передатчиком T в последовательность оптических сигналов. По кабелю она попадает в приемник R, который возвращает им электрическую форму. В качестве источников света могут использоваться несколько типов лазеров, а для передачи одно- или мультимодальные кабели.


Но не стоит забывать о научной и инженерной сложности проблем, возникающих при реализации принципов кремниевой фотоники. О ней можно судить хотя бы по тому, что первые экспериментальные работы в этом направлении датируются еще серединой 80-х годов ХХ века, попытки коммерческих разработок были сделаны в начале 2000-х годов, а первые коммерческие результаты были получены только после 2016 года. Сорок лет... При том, что практическое использование оптоволоконной связи началось в середине шестидесятых, а экспериментальные работы - намного раньше.

Суть проблемы материалов на основе кремния заключается в невозможности работать на тех же частотах, которые используются в волоконной оптике, а использовать альтернативные материалы практически невозможно по экономическим причинам. В существующие технологии полупроводникового производства вложены колоссальные средства. Для реализации принципов кремниевой фотоники их нужно адаптировать к существующим технологиям. Решением может быть включение в состав микросхем миниатюрных приемников и передатчиков и прокладка между ними соответствующих волноводов. Это сложнейшая инженерно-техническая задача, которая по состоянию на 2017 год решена.

Раньше других это удалось сделать Intel - корпорация уже предложила свои продукты рынку. Вскоре следует ожидать объявлений от IBM , за ними последуют Mellanox , Broadcom , Ciena , Juniper и ряд других крупных компаний. Параллельно скупаются добившиеся успеха стартапы. Процесс пошел, но не быстро. Трудности вызваны тем, что создание новых продуктов требует значительных средств и времени, что дает преимущества крупнейшим вендорам.

Четыре уровня коммуникаций

Технологии кремниевой фотоники уже сегодня позволяют создавать 100 Гбит Ethernet , а в обозримом будущем 400 Гбит и 1 Тбит. Такие скорости обмена данными открывают возможности для конвергенции современных архитектур в качественно новые - на уровне стойки RSA (Rack-Scale Architecture) и на уровне ЦОДа ESSA (Extended-scale system architecture). Предел первой ограничен так называемым подом (одной или несколькими стойками), вторая охватывает весь ЦОД. Компоненты этих инфраструктур связываются удаленно по шине PCIe (PCIe-bus interconnects at a distance).

Средствами силиконовой фотоники создается иерархическая система коммуникаций, разделенная на 4 уровня:

Уровень 1 «Чип» : Внедрение технологий кремниевой фотоники внутрь чипа интересно по нескольким соображениям:

  • Чипов существенно больше, чем стоек, следовательно, потребность в приемниках и передатчиках велика, и эти технологии будут быстро развиваться.
  • Существенно повысятся скорости обмена вне чипа, поэтому могут заметно измениться принципы системного проектирования.
  • В отдаленной перспективе можно представить, что и между компонентами чипа могут использоваться оптические коммуникации, например для обмена между ядрами. Но на таких коротких расстояниях медь надолго сохранит свои позиции.

Кремниево-фотонная микросхема, ставшая результатом десяти лет исследований, способна передавать данные с помощью световых импульсов на скорости до 100 Гбит/с. При испытаниях дистанция передачи достигала двух километров.

Свет позволяет передавать данные быстрее, чем медные кабели, которыми в центрах обработки соединяют системы хранения, сетевое оборудование и серверы. Кремниево-фотонный чип даст возможность связывать высокоскоростными волоконно-оптическими соединениями серверы и суперкомпьютеры будущих поколений, в которых между вычислительными узлами нужно переносить огромные объемы данных.

В IBM свою технологию разрабатывают с расчетом на продвижение в ЦОД, а в ПК или карманных устройствах в скором времени ее ждать не стоит, отметил Уилфирд Хенш, старший менеджер подразделения IBM по кремниевой фотонике.

Технологии кремниевой фотоники способны кардинально изменить принципы развертывания серверов в ЦОД благодаря возможности отделения друг от друга блоков обработки, памяти и хранения. В результате такого разъединения приложения смогут работать быстрее, а затраты на комплектующие уменьшатся за счет консолидации вентиляторов и блоков питания.

Ввиду роста применения систем машинного обучения и обработки Больших Данных сегодня увеличиваются потребности в вычислительной мощности серверов. При наличии оптических межсоединений десятки процессоров могли бы взаимодействовать в пределах одной серверной стойки, что облегчило бы распределение задач для многоузловой обработки, полагает Ричард Доерти, директор по исследованиям The Envisioneering Group.

С оптическими межсоединениями серверы можно было бы, подобно накопителям, легко заменять без прерывания работы в зависимости от потребностей в вычислительной мощности, добавил он.

Свет уже используется для дальней передачи данных в сетях связи, но волоконно-оптические технологии недешевы. Оптические кабели также поддерживаются интерфейсом Thunderbolt, который используется в «Маках» и ПК для высокоскоростного обмена данными с периферийными устройствами.

Технология кремниевой фотоники IBM дешевле и рассчитана на более короткие дистанции, чем оптическое оборудование телекоммуникационных сетей, утверждает Хенш.

В Intel тоже создали кремниево-фотонные чипы для ЦОД, но корпорация не сумела выдержать анонсированные сроки выпуска. IBM, возможно, и не первая, кто предложил кремниево-фотонный передатчик, но ее технология более жизнеспособна и менее сложна, чем у Intel, полагает Доерти.

По его словам, чип IBM проще и дешевле в производстве и имеет простую структуру, тогда как решение Intel требует дополнительных физических компонентов.

В самой Intel однако утверждают, что ее оптические модули интегрированы и имеют преимущества с точки зрения тестирования и стоимости.

Чипы двух компаний совершенно по-разному передают данные, и каждый имеет свои плюсы. Чип IBM рассчитан на передачу по одиночному волокну по четырем каналам с разной длиной волны, тогда как технология Intel лучше масштабируется, позволяя увеличивать количество жил в кабеле, указал Доерти.

У Intel есть оптические кабели MXC, имеющие до 64 жил, скорость передачи по каждой - 25 Гбит/с. Но увеличение количества волокон может обходиться дорого, а одножильный вариант от IBM при меньшей стоимости может отвечать требованиям многих ЦОД с точки зрения скорости и дистанции, добавил Доерти.

В IBM не уточнили, когда ее кремниево-фотонные чипы могут поступить на рынок.

Вот и наступила весна… А вместе с ней пришла пора очередного Форума Intel для разработчиков (IDF), проводимого дважды в год в солнечной Калифорнии и регулярно гостящего в других городах мира (с недавних пор - и в России). Причем, весна в данном случае пришлась не просто для красного словца - в Сан-Франциско, где IDF в очередной раз проходит с 1 по 3 марта в громадном конференц-центре Moscone West,

действительно сейчас тепло, цветут деревья и кусты, обдавая весенними ароматами, а местные жители ходят по улицам в рубашках или легких куртках, если нет дождя. На этом жизнерадостном фоне прилетев из заснеженной Москвы не так просто было бы просиживать целыми днями в конференц-залах и пресс-румах, толкаться среди нескольких тысяч посетителей и организаторов IDF на шоу-кейсах и в кулуарах. Если бы не та, порой уникальная и захватывающая информация, которая громадными порциями сваливается на тебя, не оставляя ни минуты покоя. Даже мне, регулярному посетителю центральных Форумов Intel (а также многих других выставок и конференций сходной тематики), пресытившемуся, казалось бы, подобными мероприятиями и воспринимающими их едва ли не как очередной голливудский блокбастер, добротно слепленный по давно известным клише, нередко приходится удивляться тому потоку новинок, который заготовили для участников IDF его организаторы. Удивляться и даже местами восхищаться…

Нашим постоянным читателям, наверное, уже нет нужды объяснять, что такое Intel Developer Forum и «с чем его едят». Это мероприятие, регулярно в течение многих лет проводимое корпорацией Intel и ее ближайшими друзьями по IT-цеху, имеет свои индивидуальные особенности, отличающие его как от различных компьютерных выставок (вроде CeBIT, Computex, Comdex или CES, где сотни и тысячи производителей IT-продукции хвастаются своими достижениями с целью их повыгоднее продать), так и от крупных мировых научных и технических конференций (вроде Material Research Society Meeting, IEEE и других подобных, где сотни ведущих мировых институтов и исследовательских лабораторий сообщают о новейших научных открытиях, изобретениях и технологиях, внедрением которых предстоит заниматься еще немало лет). На мой взгляд, IDF все же ближе именно к последним, чем к первым. Поскольку Intel, расходующая на Research & Development более 4 миллиардов долларов ежегодно, на IDF как раз старается продемонстрировать не столько текущие и готовые к выпуску на рынок продукты (микропроцессоры, платформы и пр.),

сколько сообщить индустрии тот вектор, в котором она будет развиваться в течение ближайших лет. Обнародовать те нынешние и будущие технологии, внедрением которых корпорация занимается вместе со своими партнерами и другими IT-разработчиками, привлечь на свою сторону новых исследователей и инженеров (то есть «девелоперов», по названию Форума), а возможно, и обсудить целесообразность тех или иных шагов в рамках всего IT-сообщества. И хотя, безусловно, «выставочно-продажная» канва на IDF в некоторой мере тоже присутствует, наиболее ценной и интересной, на мой взгляд, является именно исследовательски-технологическая его часть.

Вот и «нулевой» день нынешнего IDF, прошедший 28 февраля для ведущей прессы и аналитиков со всего мира, преподнес несколько сюрпризов, о чем я и постараюсь рассказать в этом репортаже, предваряющем рассказ о самом Форуме.

Кремниевая нанотехнология: взгляд на 20 лет вперед

В первом докладе нулевого дня речь пошла о том, какими путями может и будет развиваться кремниевая технология производства вычислительных устройств в ближайшие десятилетия. Кратко и примитивно это можно было бы назвать «оправданием закона Мура на 20 лет вперед», если бы такой банальный на первый взгляд посыл не был подкреплен захватывающими дух деталями научных исследований в области нанотехнологий и их воплощением на практике в технологии промышленного масштаба. Доклад представил Пауло Джарджини (Paulo Gargini, на фото), директор Intel Technology Strategy и Intel Nanotechnology Research.

Более чем часовая презентация проходила в очень быстром темпе, не давая ни на секунду опомниться и спокойно поразмышлять над тем или иным слайдом. Ее подробный пересказ, видимо, был бы полезен для некоторых наших вдумчивых читателей. Но он занял бы непомерно много места (это около сотни «серьезных» слайдов, к каждому из которых еще нужно добавить немало комментариев). Поэтому я отмечу лишь отдельные наиболее интересные, на мой взгляд, моменты, тем более что некоторые из присутствовавших в нем деталей я и мои коллеги уже описывали в своих статьях по результатам предыдущих IDF и недавних «технологических прорывов» Intel. Более развернуто я изложу этот материал, возможно, в другой раз.

Последние 40 лет число элементов на кремниевых кристаллах неуклонно продолжало удваиваться каждые два года, а стоимость одного транзистора на кристалле теми же темпами снижалась.

Лет 10 назад ученые предрекали большие проблемы при переходе к 100-нанометровым приборам, но, к счастью, этого не случилось, и нынче у лидеров отрасли есть хорошо изученные перспективы развития традиционной кремниевой технологии с планарными КМОП-транзисторами еще лет на 10 вперед (см. слайд).

Необходимость в принципиально новых электронных приборах возникнет лишь году к 2013-му, когда возможности миниатюризации нынешних приборов фактически будут исчерпаны.

Среди новых кремниевых приборов рассматриваются многозатворные (например, tri-gate) нанотранзисторы, приборы на основе кремниевых нанотрубок, полностью окруженные затвором, а также приборы с квазибаллистическим транспортом.

В более отдаленной перспективе рассматриваются также углеродные нанотрубки диаметром в единицы нанометров, которые, в зависимости от строения, могут выступать в качестве металла или полупроводника. Интересными для наноэлектроники являются приборы на базе гетероструктур InSb (с уникально высокой подвижностью), см. слайд.

А что же будет после 2020 года, когда КМОП-технология исчерпает возможности миниатюризации, достигнув атомарного предела?

Тогда в ход, возможно, пойдет спинтроника - оперирование магнитными моментами элементарных частиц:

Кое-кто поговаривает и о квантовых компьютерах. Пока же КМОП-технология жива и закон Мура будет действовать еще, по крайней мере, лет 15-20.

Кремниевая фотоника: новый прорыв

Другим интересным событием нулевого дня этого IDF стал доклад о , созданном на кремниевом кристалле в Intel. Строго говоря, новость об этом обошла мир за несколько дней до IDF (17 февраля вышла соответствующая статья в Nature и пресс-релиз корпорации), но здесь главные разработчики нового прибора прилюдно поделились многими доселе неизвестными деталями и продемонстрировали аудитории многочисленные кристаллы с такими лазерами. Например, на этом фото (фото автора) кристалл содержит сразу 8 таких лазеров.

Не вдаваясь в подробности, отметим, что для того, чтобы создать такой лазер на кремнии, ученым Intel пришлось решить важную проблему - так называемой «двухфотонной абсорбции», которая ранее препятствовала созданию непрерывного лазера на кремнии.

Использование кремния в качестве материала для создания лазера и для многократного усиления ИК-излучения (благодаря гигантскому, примерно в 20000 раз эффекту Рамана),

прежде было проблематично, поскольку рамановское усиление при мощной накачке выходило в насыщение, и получаемой при насыщении мощности не хватало для создания непрерывного лазера.

Дело в том, что энергии одного инфракрасного фотона (кванта света) недостаточно для того, чтобы при соударении с атомом кристаллической решетки кремния выбить из него (освободить) электрон. Однако если с атомом столкутся сразу два фотона (что нередко происходит при интенсивной накачке лазера внешним излучением), то ионизация атома становится возможной, и свободные электроны в кремнии начинают сами поглощать фотоны, препятствуя тем самым дальнейшему рамановскому усилению. Проблему удалось решить, создав вдоль оптического канала так называемую p-i-n-структуру (области кремния с дырочной и электронной проводимостью соответственно по бокам нелегированного оптического канала в кремнии, см. рисунок).

Подавая электрическое смещение между p- и n-областями кремния, «двухфотонные» свободные электроны можно эффективно удалять из области оптического канала, существенно повышая тем самым рамановское усиление в кремнии и создавая непрерывный лазер.

На базе данного решения можно создавать два важных оптических прибора прямо на едином кристалле кремния - усилитель и модулятор сигналов.

А также при помощи каскадов зеркал (расположенных прямо на кремнии) делать многоволновые оптические каналы связи и компактные лазеры для различных применений.


В руках у Mario Paniccia, директора Intel Photonic Technology Lab, кристалл нового непрерывного кремниевого лазера (справа) и традиционный дорогой рамановский оптический усилитель (слева):

Это достижение сотрудников Intel открывает новые горизонты развития кремниевой фотоники и ее дальнейшего внедрения в традиционную микроэлектронику.

IBM объявили о прорыве в области кремниевой фотоники – была создана первая полностью интегрированная мультиплексированная микросхема. Новое устройство позволит отдельным чипам взаимодействовать между собой с помощью оптических, а не электромагнитных волн, что позволит повысить пропускную способность до 100 ГБ в секунду и выше. Эта микросхема размещается на одном кристалле кремния и имеет решающее значение для долгосрочного внедрения оптических технологий в микромасштабах. Но почему у таких мощных компаний как IBM и Intel потратили целые десятилетия на изучение кремниевой фотоники?

В теории, с помощью кремниевой фотоники можно решить многие серьезные проблемы, связанные с дальнейшим использованием медных соединителей. Одна из основных проблем медного провода в том, что его нельзя масштабировать также активно, как другие жизненно важные детали современного процессора. После определенной точки физически невозможно уменьшать медный провод дальше без ущерба для его производительности и/или срока годности. В теории, оптические соединения могут передавать данные гораздо быстрее, потребляя при этом меньше энергии. Помимо этого, многие компании считают, что кремниевая фотоника является необходимой для создания суперкомпьютеров с вычислительной мощность около одного эксафлопса (exascale computing).

К сожалению, кремний — это плохая среда для оптических приборов, так как масштабы производства настолько разняться (оптические волноводы и другие компоненты гораздо больше, чем КМОП кремния), что не существует инженерных решений, которые могли бы эффективно и недорого интегрировать оптические элементы в существующие КМОП с использованием кремния, а не дорогостоящих альтернативных материалов, таких как, например, арсенид галлия. Теперь же компания смогла разместить чипы, созданные по технологии кремниевой фотоники, прямо на модуле процессора.

График из презентации Intel о кремниевой фотоники иллюстрирует и энергопотребление, которого стараются достигнуть производители. Долгосрочные планы на кремниевую фотонику предлагают таки пропускную способность и количество энергии на бит информации, которая недоступна медным соединениям.
После десятилетий работы кремниевая фотоника может казаться лишь еще одной сумасшедшей идеей, которая хорошо выглядит на бумаге, но совершенное неприменима на практике, но прогресс не стоит на месте, и хотя передовые компании, такие как IBM, Intel или HP, могут не выпустить технологию на коммерческом уровне в ближайшее время, она наверняка найдет применения в научных лабораториях, сверхкомпьютерах и датацентрах.

Сегодня оптические соединения используются преимущественно на уровне устройство-устройство или в оптических сетях. Их основные составляющие и принципы функционирования рассмотрены в одном из предыдущих . Однако существуют еще три категории межкомпонентных соединений - плата-плата, микросхема-микросхема и внутрисхемные связи, главная трудность реализации оптических соединений для которых заключается в необходимости объединить оптические и электронные функции на общей полупроводниковой подложке. Эту задачу, возможно, решит кремниевая фотоника, использующая созданные на основе кремния материалы для генерирования, передачи, управления и детектирования света.

Побудительные причины

Интерес к разработке оптических каналов связи на уровне плат был вызван созданием лезвийных серверов. Здесь очевидным объектом для применения оптических технологий является соединительная панель (backplane). Обычно на ней реализуются высокоскоростные соединения типа точка-точка или многоточечные с типичной длиной до 1 м. К ключевым преимуществам оптических соединительных панелей относятся низкие перекрестные помехи и большая полоса пропускания. Однако многие из сегодняшних оптических соединительных панелей скорее похожи на коммутационные. В них был продемонстрирован ряд оптических технологий, включая полимерные световоды, построенные на кремнии, ленточные, интегрированные с лазерами поверхностного излучения с вертикальным резонатором (VCSEL), планарные цепи световодов и фотодиоды. Но ни одна из них, за исключением некоторых нишевых приложений, не заменила медные соединения.

Трудно предугадать, прекратится ли гонка частот тактирования в процессорной индустрии, ведь экстраполируя закон Мура, можно ожидать к концу 2010 г. появления чипов с тактовыми частотами около 10 GHz. Однако и при существующих частотах становится все труднее обеспечивать необходимую полосу пропускания в печатных платах или модулях на базе медных шин. Было показано, что потери на печатных платах стандарта FR-4 (Flame Resistance 4) с медной разводкой быстро растут при частотах свыше 1 GHz, при этом ухудшается отношение сигнал/шум и появляются ошибки в синхронизации. Вдобавок перекрестные помехи ограничивают плотность разводки. Высокоскоростные оптические каналы длиной до 10 см между микросхемами имеют ряд преимуществ по сравнению с медными. У них меньшие потери при большей полосе пропускания, кроме того, они не подвержены перекрестным электромагнитным помехам. В последние 20 лет были предложены оптические технологии для преодоления ограничений медной проводки, однако относительно высокая стоимость и использование экзотических материалов сделали их неприемлемыми для широкомасштабного производства.

Разработка электрических связей внутри интегральных микросхем, функционирующих на частотах в несколько гигагерц, также постоянно усложняется. В такой ситуации становятся потенциально привлекательными оптические каналы с типичной длиной менее 1 см. Этому способствуют следующие причины:

  • снижение времен задержек по сравнению с использованием медных проводников;
  • большая полоса пропускания, не сдерживающая рост тактовых частот транзисторов;
  • пониженное электропотребление;
  • нечувствительность к электромагнитным помехам.

Однако сегодня работы по интеграции оптики и электроники не только пребывают на начальных этапах, но и весьма дороги по сравнению с традиционными технологиями на базе меди.

Весьма интенсивно ведет исследования в этой области Intel, подход которой к решению проблемы базируется на кремниевой фотонике. Основными строительными блоками предлагаемой интегральной платформы здесь являются настраиваемый лазер с внешним резонатором (External Cavity Laser - ECL), кремниевый модулятор, кремний-германиевый фотодетектор и недорогая технология взаимосвязей.

Кремниевые источники света

Хотя лазеры на базе кремния еще недостижимы, работы над такими источниками света, излучающими в видимом и инфракрасном диапазонах, широко ведутся во всем мире. Кремниевые источники являются одной из органических частей для монолитной интеграции, поскольку позволяют изготовить на едином субстрате и оптические элементы, и управляющую электронику. При использовании кремниевых световодов излучение должно быть в инфракрасном диапазоне с длиной волны более 1,1 мкм, поскольку именно в этом окне потери минимальны.

В настоящее время большинство исследований ведется в направлении использования эффекта электролюминесценции - излучения, получаемого в результате электрической накачки. До тех же пор, пока надежные и эффективные кремниевые излучатели не будут получены, рассматривается возможность гибридной интеграции, т. е. применения некремниевых источников света, соединяемых с кремниевыми световодами.

Трудность в изготовлении кремниевых источников света вызвана наличием запрещенной энергетической зоны с непрямыми переходами. Это приводит к тому, что вероятность безызлучательных переходов (в частности, рекомбинации Оже) становится выше, чем с эмиссией света.

Чтобы получить инфракрасное излучение, в кремний нужно ввести соответствующие примеси, например эрбий. Кремниевые световоды с примесью эрбия излучают в инфракрасном диапазоне, если дополнительно легировать их кислородом для образования оптически активных ионов в решетке. Однако данный тип устройств имеет существенный недостаток: хотя интенсивность излучения бывает относительно велика при 100° К, при комнатных температурах она резко падает.

Следующий путь повышения эффективности выхода света в кремнии - снижение количества безызлучательных переходов при рекомбинации электрон-дырка. Этого достигают посредством уменьшения диффузии носителей к центрам безызлучательной рекомбинации в решетке, что увеличивает вероятность переходов с излучением света. Один из способов такого ограничения, совместимый с технологией СБИС, основан на применении нанокристаллов. Другие средства предусматривают использование квантовых колодцев в GeSi или дефектов кристаллической решетки.

Для получения излучения с другими длинами волн можно включать примеси, отличные от эрбия. Например, тербий обеспечивает излучение с длинами волн 0,98 и 0,54 мкм. Однако время жизни и надежность таких устройств для применения их в практических целях слишком низки.

Еще одно ограничение для всех типов кремниевых источников света с прямым током - низкая скорость прямой модуляции - порядка 1 MHz. Это значит, что для создания высокоскоростных каналов они требуют внешних модуляторов.

Архитектура устройства

Работы по созданию кремниевых источников света продолжаются, однако они еще далеки от завершения. И до тех пор, пока не появится надежный и эффективный кремниевый источник света, интегрированные системы фотоники будут нуждаться в традиционных материалах III-V групп таблицы Менделеева.

Приведем, вслед за Intel, пример, как могут быть использованы лазер с внешним резонатором и кремниевый световод с решеткой Брэгга в качестве фильтра для генерируемого кристаллом групп III-V света с целью получения нужной длины волны для оптических коммуникаций. Сильный термооптический эффект в кремнии можно применять для настройки генерируемой волны.

Решетка Брэгга изготавливалась травлением на пластине «кремний на изоляторе» (SOI) множества бороздок размером 1,2×2,3×3,4 мкм. Затем, после соответствующей обработки, детали которой мы опускаем, решетка Брэгга помещалась в световод. ELC строился посредством стыка световода, содержащего решетку Брэгга, с чипом усилителя. Резонатор формировался между решеткой Брэгга, служащей зеркалом с одной стороны, и чипом усилителя с 90%-ным отражающим покрытием, образующим зеркало с противоположной стороны. Световод с решеткой Брэгга стыковался с усилительным чипом под углом 8°, что вместе с неотражающим покрытием уменьшало эффективную отражательную способность грани до 10-5. Генерируемый луч выходил с той грани лазерного диода, на которую было нанесено 90%-ное отражающее покрытие, и попадал в конус одномодового оптоволокна с линзой (рис. 1). Линза служила для увеличения связи между оптоволокном и лазером. Для лучшего понимания принципа работы лазера с внешним резонатором с использованием решетки Брэгга приведем его схему на более традиционных компонентах (рис. 2).

Кремниевые модуляторы

Итак, выше был описан настраиваемый лазер на базе сложного полупроводникового диода групп III-V и кремниевой решетки Брэгга. Однако лазер на выходе дает непрерывную волну, которая не несет информации. Для передачи данных по оптическим коммуникационным каналам необходим оптический модулятор. Такие устройства с частотой модуляции выше 1 GHz в типичном случае изготовлялись либо из сегнетоэлектрических кристаллов ниобата лития (LiNbO3), либо из сложных полупроводников с множеством квантовых ям, где используется локализованный эффект Штарка (расщепление спектральных линий атома под действием внешнего электрического поля) или эффект электроабсорбции. Частота модуляции в этих устройствах достигает 40 GHz.

Потребность рынка в недорогих решениях стимулировала разработки модуляторов на базе кремния. К тому же кремниевая фотоника позволяет получать монолитные интегрированные оптические элементы на базе КМОП-технологии.

Многими исследовательскими центрами были предложены и продемонстрированы кремний-базированные оптические модуляторы. Мы приведем здесь экспериментальный вариант устройства на основе интерферометра Маха-Цендера (МЦИ). Благодаря оригинальной разработке фазосдвигающей схемы на базе МОП-конденсатора, встроенного в пассивный кремниевый волновод МЦИ, для длины волны 1,55 мкм удается достичь частоты модуляции 2,5 GHz.

Схематическое изображение МЦИ приведено на рис. 3. Входящий свет расщепляется на две равные части и направляется в два плеча интерферометра. Каждое из них может содержать активную секцию, которая с помощью прикладываемого напряжения незначительно изменяет скорость распространения света в плече. За счет этого на выходе получают сдвиг фаз лучей, что вследствие интерференции приводит к колебаниям интенсивности в результирующем луче.

Кремниевые фотодетекторы

Последним активным компонентом, который должен быть встроен в полностью кремниевую оптическую платформу, является фотодетектор. Кремниевые фотодетекторы уже получили широкое распространение для приложений, использующих видимый диапазон света (0,4-0,7 мкм), например, в цифровых камерах и сканерах, вследствие своей высокой эффективности для этих длин волн. Однако большинство полупроводниковых лазеров, применяемых в коммуникациях, работают в ближней инфракрасной области, обычно 850, 1310 и 1550 нм, в диапазоне, в котором кремний является прозрачным, т. е. плохим детектором. Самый распространенный способ увеличения тока выхода кремниевых фотодетекторов заключается в добавлении германия, что приводит к уменьшению ширины запрещенной зоны и увеличению длины волны детектируемого света.

На рис. 4 приведено сечение фотодетектора на базе световодов из SiGe, разработанного Intel. Он выполнен на той же платформе SOI, что и ранее рассмотренный модулятор. Слой SiGe расположен на вершине кремниевого наплыва световода.

Первый вариант детектора в качестве поглощающего свет материала использовал 18 квантовых ям на базе Si0.5Ge0.5. Чувствительность для некоторых устройств достигала 0,1 А/В при длине волны света 1316 нм. Разработчики полагают, что путем некоторых усовершенствований чувствительность может быть повышена до 0,5 А/В. Полоса пропускания была ниже 500 MHz вследствие значительного сдвига валентной зоны, что препятствовало транспорту дырок. Однако полагают, что этот недостаток может быть исправлен за счет изменения состава пленки. Моделирование показывает, что пропускная способность может достигать 10 Gbps.

Исследования в области планарной оптики на основе кремния ведутся во многих лабораториях мира в течение уже нескольких десятилетий, однако промышленные образцы еще не получены. Тем не менее в последнее время наблюдается существенный прогресс в понимании актуальных проблем и возможных способов их решения.

Квантовые ямы

Квантовой ямой называется потенциальная яма, которая ограничивает движение частиц. Попадая в нее, частицы, ранее свободно перемещавшиеся в трехмерном пространстве, могут двигаться только в плоской области, по сути, в двухмерной. Эффект ограничения движения проявляется в том случае, когда размер квантовой ямы становится сравнимым с де-бройлевской длиной волны носителей (обычно электронов или дырок). Рассмотрим на качественном уровне, как создается квантовая яма.

Как известно, в соответствии с зонной теорией, энергетический спектр полупроводника состоит из трех зон (снизу вверх): валентной, запрещенной и зоны проводимости. Если поместить тонкий слой полупроводника с узкой запрещенной зоной между двумя слоями полупроводников с широкими запрещенными зонами, то электроны зоны проводимости среднего тонкого слоя, у которых энергия ниже уровня энергии широких запрещенных зон прилегающих полупроводников, не смогут проникнуть сквозь потенциальный барьер, образованный ими. Таким образом, два гетероперехода ограничивают движение электронов с двух сторон, т. е. электроны оказываются запертыми в одном направлении. Можно сказать, что движение электронного газа в квантовой яме становится двухмерным.